

Seminar Agenda

- Welcome and Introduction
- Operations Modeling Basics
- Operations Model Applications
- Q&A (Panel Discussion)
- Lunch
- Operations Modeling Tools
- Next Steps

CALSIM II – Erik Reyes
HYDROPS – Tung Van Do
WQRSS – Carl Chen
HEC-RAS – Eric Clyde

Temperature Model of Oroville Facilities and Feather River

Carl Chen, Wangteng Tsai and Curtis Loeb
Systech Engineering, Inc.
June 24, 2003

Model Description

- Engine WQRRS
- Model Components
 - Lake Oroville Model
 - Thermalito-Complex Model
 - Feather River Model
 - Integration
- User Interface
 - Map screen
 - Input screen
 - Output screen

Model Theory

Control Volume

- Lake layers
- River segments

Water Balance

- Tributary inflows
- Diversions
- Release & pumped back

Heat Budget

- Solar radiation
- Evaporation
- Advection, diffusion, mixing

Modeling Steps

- Calibration -2002
 - Actual flow
 - Actual meteorology
 - Simulated vs. Observed data
- Benchmark Long-Term
 - Synthesized hydrology
 - Synthesized meteorology
- What-If Scenarios
 - Benchmark case
 - Plus proposed changes

Graphical User Interface

WQRRS Temperature Model For Oroville System

Main Screen

Input Data

Run the Model

Output

Exit

Input Data

Main Screen

Oroville Operational Data

Meteorology Data

Output Data

Main Screen

Oroville Reservoir – .

Meteorological Data

Cutput

Microsoft PowerPoint .

Model Output (Hourly)

Lake

- Temperature profile
- Cold water storage volume
- Temperature of reservoir release

River

- Temperature
- Flow
- Water depth

Diversions

Temperature

Oroville Cold Water Storage

Croville Reservoir - Output

Return

Oroville Temperature Profile

Power Canal Temperature

Thermalito Outflow Temperature

Diversion Temperature

Feather River Temperature

Feather River Flow

Feather River Water Depth

Feather River Temperature

Model Application

- Water supply conditions
- Monthly operations and water budget
- Power generation
- Hourly operation
- Reservoir temperature
- River temperature
- Diversion temperature

WQRSS Q&A

Seminar Agenda

- Welcome and Introduction
- Operations Modeling Basics
- Operations Model Applications
- Q&A (Panel Discussion)
- Lunch
- Operations Modeling Tools
- Next Steps

CALSIM II – Erik Reyes
HYDROPS – Tung Van Do
WQRSS – Carl Chen
HEC-RAS – Eric Clyde